
PMM U.S.S.R., Vol.44,PP.70-75 

@Pergamon PreSS Ltd.1981.Printed in U.K. 

THE STEFAN TYPE PROBLEM OCCURRING IN THE INVESTIGATION 

OF SALT DISSOLUTION AND TRANSPORT PROCESS IN SOIL * 

V. E. KLYKOV, V. L. KULAGIN and V. A. MOROZOV 

0021-8928/81/l 0070 $7.50/o 

UDC 532.72 

The boundary value problem associated with a parabolic equation whose coefficients 

become discontinuous from some instant of time along a beforehand unknown sliding 

line is considered. Such problem defines, for instance, the dissolution and removal 

of substances from the soil under hydraulic structure foundations, flushing of 

saliferous soils, etc. 

A characteristic of the investigated processes is that they run in two stages. In the 

first, dissolution occurs throughout the filtration region, while the second is characterized 

by the emergence and increase with time of a zone of complete dissolution of the substance 

solid phase. Similar problems were considered earlier in /l--3/. 

A numerical method using finite differences is proposed here. The existence and unique- 

ness of solutions of finite difference problems is proved, and an iteration process whose con- 

vergence is also proved is presented. Proof is also given of the convergence of solutions of 

finite difference problems to the solution of the input problem as pitch grid approaches zero, 

which confirms the existence of such solutions. 

1, We pass to the formulation of the problem which for convenience we shall consider on 

the example of flushing saliferous soils. We examine a homogeneous layer of soil of depth L 

containing noxious salts in solid and fluid states. Let us assume that the flushing water 

which may also contain salts permeates into the layer from its surface. The concentration of 

salts in the water is assumed to be c*>o. The salt and filtration streams that take place 

under these conditions are one-dimensional and parallel to the s-axis with the soil surface 

taken as the reference plane. If at the initial instant of time the distribution of solid 

salts is such that their quantity increases with depth or remains constant, then, after some 

time from the commencement of flushing, a region of complete dissolution of salts is formed 

near the soil surface. That region is separated from the region containing solid phase salts 

byan a priori unknown shifting boundary 1 (t) I where t is the time. The unknown concentra- 

tions of dissolved and solid salts are defined by functions c(r,t)and N (s. t) , respectively. 

Functions c (z. t), N (z, t) , and Z(t) are determined in conformity with /3/ by the following 

equations: 

m2ct -m DC,, - ” (t) c.\ - NI 

AV, --p (c* - c) 
(1.1) 

0 (5 <L. 0 <t < t*; l(t) (Z (I,, t> t* 

mlc, = DC,, - u (t) c, 

JY(Z, q=o, O<r<l(t), t>t* 

c (z; 0) = c*. d’v (I. 0) m: N, (5) > 0 

DC, (0, t) fJ (t) (c (03 t) - c*), c, (‘5, t) = 0. t > 0 

c (1 (t) - 0, t) = c (I (t) + 0, f), c, (1 (f) - 0, t) = cs(Z (t) + 0, t) 

N (1 (t) + 0. t) 0, t > t*. t* _~ lain (t: iV (0, t) = 0) 

where nt,, and mr are coefficients of soil porosity, D is the effective coefficient of diffus- 

ion, z:(t) is the filtration rate, y*is the coefficient of the dissolution rate, c* is the sat- 
uration concentration, and c* is the concentration of salts in the water permeating the soil. 

The subscripts z and t at the unknown functions denote derivatives with respect to respective 
variables. 

For problem (1.1) which defines the first stage of the process 0 <t ,C, t* the following 

statement is valid /4,5/. 

Lemma 1, If the assumptions 

?rtiJ > 0, D ) 0. ;' ,/ 0. c* ; c* ) 0. c.* > 11 (f) :> L'O ) 0 

u (t) E C’ IO, 3‘1. 11' (i) -> 0, IV* (.r) E C' LO, Ll, Xr' (5) > a -> 0 
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hold, then there exists a unique instant t*>O such that fox 0 <t <t* a inique classical 
solution of problem (1.1) obtains, and the following estimates are valid: 

c* 6 c(s, t) <c*; 0 < c,(s, t)< JG; 0 <a<NX(x, t)<A 

where A, Ko, and a0 are constants dependent of the problem coefficients. 
Below we examine only the second stage (t> t*), taking as the initial instant of time 

t = t* and functions co(z) = c(r, t*) and N,(s) = N(z, t*)as the initial conditions. Note 
that the estimates of Lemma 1 are vaSid for these functions. We shall consider problem (1.1) 
on the above assumptions. 

definition, The set of three functions ~(2, t), Nfz, t) , and l(t), such that c(2,t) 
and N(x, t) are continuous in QT = [O, L1 x [O, 2'1 satisfy the equations and the right-handbound- 
ary condition in (1.11 in the classical sense, and the left-hand side one in the sense that 

I&+ DC, (z, t) = U @)(c (0, t) - c,), will be called the solution of problem Cl.11 for t>t*. 
The condition of union of the derivative of c, on the curve l(t) is satisfied in the sense 
that 

lime.+o I c, (I (t) - &, t) - G (I (t) -I- 6, t) I = 0 

Function Z(~)E CIO, 2’1 satisfies the equation N (I (t), t) = 0. 

2, To prove the existence of a solution of this problem we, first, pass to the finite 
difference problem,and shall prove the existence and uniqueness of its solution and,then,show 
thatthesequence of finite diffesence problems converges to the solution of the input problem 
(1.1) as the gird pitch approaches zero. 

Let us consider the sequence of grids 

where T& is selected so as to conform to the method of 
node of the grid /6/. We select an implicit four point 
difference equation: 

M, j= 1, * * *, ar] 

catching the shifting boundary at a 
scheme and obtain the following finite 

ml(~ij)t=D(~$)lX-~(~:)x. i=i,...,j--1 
1 - I 

ItL*(C{)t = U (Ci')s,t - V' (Ci)x -f y (C* - C{), i = j $ 1, . . ., $1 - I 
(N,l)t=--y(c*-ci’), i=j, . . ..M 

D(Clj)x=v'(Cgj-C*), (CBl)s=O,, Cil=CO(Xi)l i=O, ...( M 

(Cjj)x=(Cj+l)r, Njj=O, j=l, . ..( M 

(c& = (CJ - ci_.J / h, (c& = (ci,, - zc,’ + cj_J / h2, fc& = (cl - cf’) / ‘j 

(2.1) 

7j= ivj-‘/(y(c* -ej)), j= 1, . . ., iv (2.2) 
where the last equation was obtained from the equation (IV,'), = -_y(c* - cf) with allowance for 
condition N$ = 0. 

For solving problem @,l)-- (2.2) we obtain a numberof a prioriestimates. 

Lemma 2. Let 

D > 0, in, > 0, viz j 0, y > 0, c* > c* > 0, v* > v’ > vo> 0 
then the estimate . 

c.$ 6 ci.' < c*, i = 0, . . ., M, j = 1, . I ,, M 
is valid. The proof is based on the maximum principle /?/. 

Lemma 3, Let the conditions of Lemma 2 be satisfied and, furthermore 

u' > vj-', j=l > . . . . M,. y>v*Ko/(c*-c;) 

K, = (1. + u’h f D)&*c* / LI 
then the estimates 

(%%<oo,o~(fc~)x< K,.i=o,...,,~,j=I,...,.~ 

hold. We shall prove this by induction. From Lemma 1 we have 
'd ~'iEio)f~ '~~, If (c~~)~~ - IF (c,“), mim y (c+ - ci’) f 0, i = 1, ., M-i 

Let us prove that (~1)~ 60 by contradiction. Let 

max 
i=S...,, AI 

IC,L)( m: (c&'!l > u 

We shall consider the following cases: 
1) 2<iio<MM-- when we obtain the following contradictory inequality: 
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0 *I’ ,7’> !C,“l), I) IC, ,‘l>,y --- I.1 (ch’,y ‘- y (c* -- ciol) Xi U (c,oo)xz - V” (Ciugi, - 

y f& - q,, ) - ii l - /‘L; (?i,,‘jl: I 0 

2) &)=I, when from (2.1) we obtain 
(c& = -t: C:c?),j, <, \ 0 

On the other hand, the inductive assumption and the conditions of the lemma imply that 
0 D(cp),X, -: 1.> (C‘"), -- i'(c* - Cl") o*fi,-- I’(@ - c,,fir) <o 

which also yields a contradiction; 
3) with i,=O and &=M, using the boundary conditions, we again obtain a contradiction. 

Hence (cil)( 5: 0. 
Let us now assume that for j-- i,..., n the unknown inequalities are satisfied, and prove 

their validity for j=n+i. 

First we shall prove the inequality (c,'~),>O. by contradiction. We assume 

,=~,i~u (cin)l = (ciO')x < O 

Then, using the inductive assumptidn'and Eqs. (2.1), we arrive at a contradiction for 
any i, ez IO : Ml , which means that (c,"),>O for all i= O,....,N. 

To prove the inequality (c~I')~ c Kc we use the left-hand boundary condition in (2.1) which 
yieldSS 

(cP),.< 1?*(c*- c*) / u 

Moreover, fromthe inductive assumption we have 

m,(c;R),= 1) [(Cy+I)X - (tin),] - C(C;",, + y jc* - Q") c 0 
from which directly follows that 

(c,"),< (1 m7 u*h ,'I~)%+c*/ D 

Finally a proof similar to that of estimate (c;')r~:O shows that (Cy+*))t < 0. 

Len-ma 4, If the conditions of Lemma 3 are satisfied and C,i)l and cZin are the respect- 
ive solutions of problem (2.1) for r, = %,, and z,, = r?,,, then when ?z~>zI,,, we have c ,II < c ,nS 21 \. 12 
i -?z 0, . _( M. 

TO prove this we examine the remainder z,'l = CPl" - Clil', 
Function z,~ satisfies the following equations: 

mi"in:Xln -I- (c;?,, t iZlni Tzn - 1) zz 2) (z;“),, - r:’ (:;“jx - ygZ;D - (L’zn - YP) Ccyij x 

r=ml,...,n-l, m i -.: m , , yi = 0 
i-n k1,.._, N-1, mi -m,, i’i==i’ 

(z& = 0, IJ (zlyx _= L’,lbgli -;- @>n - n,=) ic:” - c*), cz;)x -= (’ 

Using the indirect proof method and taking into account the estimates Of Lemmas 2 and 3, 
we find that 2," .- CI, i I; 0,. .,M , hence CL," - C,,'h . 

Lemma 5. If the conditions of Lemma 3 are satisfied, then the estimates 

I,<N,s.zj/il:.:Il”, j-~ 1. . . . ‘M; O<U.<(‘V,)X< 

KE, i -= (1, . * ,) .I1 

_h',"' > ah > 0 

where IT,, II” , and Kz are constants independent of ?j and it, are valid. 
Indeed, from the equation (.V,Jfl == - I'(<* ~ cl') we have 

Using Eq. (2 2) for <j we obtain 

(2.3) 

(2.4) 

from which immediately follows the lower bound rj I h 1, a / yc* . TO obtain the upper bound 'j I h 
we derive the following inequality: 

j-1 

which we wxite in the form 

tj _< (1 -i h&, i (cc - c,<“j) t,_, -!- hA r’ C-f (e* - CM”)) 



The Stefan type problem 73 

Using this inequality we obtain the following estimates: 

tj < (i + hK, / (9 - cM“))j-l A / yK, <C, 

The necessary estimate now follow directly from equalities (2.3) and (2.4). 

Lema 6, If the conditions of Lemma 3 are satisfied and (~9 -&1)/r,< p , then there 
exists such K,<O independent of hand Tj that 

(ct)t > Kr, i = 0, . ., M, j -= 1, . . ., M 

The proof is by induction. From Lemma 1 we have the estimate 

mfl0 0 D (ciO),, - u0 (ciO)x + *I (c*- Q"), a, <o 

We shall prove that (~~),>a,, where 

al<min ((mzcb- P&*l)/(m~ +VI), --P(c*--c*)/%) 

Let us assume the opposite: 
min 

id,...! Af 
(c& = (ciO1)l <al 

and first consider the case of i,= 1. We have D(c,'),,= 0 and D (CA, - uu(cp), + y (c*-- cl9 >mao+ 
Hence 

M (- kmJxx - v” w, + y Cc* - ClO) > Tao (2.51 
Wt - Wt > ha Cm% - vd+) I WI) 

On the other hand, from the boundary conditions in (2.l)we have 
(Q),-- (c,O), = [v'a (co'), + (v'- v') (co" - c*)l hl (od 

From (2.5)- (2.6) for a fairly small h>O we obtain the inequality 
(2.6) 

However by 
constradictory. 

Let us now 
show that the 

0 < (m,q, - yc*) (h / T, - VW / Dr,) + (e* - c*) (9 - v”) / ?I + vh, < 
P (c* - c*) + VYz~ 

virtue of the selection CC~P(C*-C~)+L?~,<O, i.e. the obtained inequality is 
The case of i,+f also results in a contradiction. Hence (Cil)l > cl. 
assume that for all k= l,..., n -1 the inequality (~k)l>,ak is satisfied and 

(Ci”)t>cn , where a,<0 is chosen from the condition 

a, < min 
1 

m,a,_r - PK&, a*K, 2 (2yc* + v*K,) 
rn,fYT, 1 -7’ - ml--m, -> %I* + 

‘%a,_l- YC’ 
DT, ” 

I 

%I* < min (q,-l - PKg, I ml, - P (c* - c+) I vo) 

First we point out that (c~“), cannot attain a local minimum smaller than %* for i=O,..., 
n-2. This is proved by contradiction with allowance for the boundary conditions in (2.1). 

Let us now show that (c~~)~>,cz, for all i = 0,. . , M. 
Let us assume that 

idm!,y, ~~ (cin)( x &"A < a, 

Since CC,,<CZ,*, this minimum cannot by virtue of the above remark be attained for i, = 0, 

. . ..n-2. Let us consider the remaining cases: 
a) i,=n-1 . We have D (c,“_~), := ml (c;_~)~ I- E”(c:~~)~ and D(c;;;),=O. Then because of the 

selection of u,<O 

o c T,,D ((c;:;)~,, = m, (c;_,)~ i- YJ” (c~..~), < ml”,, + u’K, < 0 

The obtained contradictionshowsthat this case is impossible. 
b) i,--n. In this case D (c~“)~~ = u and D (c;-'),, = ml (cE-~)~ + B"-~(c~-~)~ - y (c' - c::-') from which 

follows the inequality 

than 

from 

0 4 (&,, - (Cn”jl i (- Fp,t-l -t w h21 W,) (2.7) 
Let us prove that (c;_~)~< (c:_~)~ by assuming that (cn,_l)t > (c::_z)L - Then from (2.7) weobtain 

i=,ff~i"&")l '* R (c;_,), < (c;_~)~ < (c,,“)[ + (- mz”,+l ‘- SC*) ‘r’ i Drl, < a,,* 

However, as previously shown, (~,")l cannot attain for i= U,...,n - 2 a minimum smaller 
a,*. Hence the above assumption is false, and in fact ('.;_l)L d (C;_a)l* 

Then we have 
D(c;:;), = (1, 1) (';-l)x.r = ml (&), :m un ((.:-_l) 

By subtracting the first equality from the second we obtain 

]((,,,=J1 - (r ;_&I DTm / h" = l(,$_Jf - ('.;_&I Din / J9 ;- ml (I;_l)l i vn cc;_,,, 

which with allowance for (2.7) and the inequality (c;:_,),-< (&)I we obtain 

"_Un - V*"i m,a,_l- Jx* < [(<,n)l-- (r;_l),] UT,,/ I‘?<: m,rr, + (--ni,l, ~1. 
;,,,*) m,JG / (UT,) + a*h', 

This inequality yields the following: 
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Taking into account the selection of c(,, with a fairly small A 217 we obtain a contradict- 
ory inequality. Hence (CC")!. a ,,, t -= 0,. ., :“I, which shows the existence of constant I,,. I) such 

that (c,'*)~ z,: /i,, L = 0, ., M, n - 1, ., hf. 

3, Let us now investigate the problem of existence of solution of problem (2.1)- (2.2). 

Theorem 1, If the condition of Lemma 3 is satisfied, the problem (2.1)- (2.2) has a 
unique solution. 

proof, Let us first assume that Tjr j -7 I,..., M are known. The solution of problem 
(2.1)-(2.2) can then be obtained by the method of run-through in explicit form /7/, and 

such solution is unique an continuously dependent on T) . We shall now show that a T; that 
satisfies Eq. (2.2) exists. For this we examine function 

CD (T) = T - Nil-l / (y (c* -c,')) 

By virtue of Lemma 5 lim,,6,(z)<O as T-PO, and for fairly large T> 0 - (D(T)> 0. 
This with the continuity of function @(T) implies the existence of such Tj* that 

Tj* = N:-l/ (y (C* - (Cj))*)) 

Let us prove the uniqueness of ti*, j= ) . . ., 1 M. We set j= 1 and assume the existence 
of the following two solutions of problem (2.1)- (2.2): TV*, clil, N,: and TI**,C~~', Nzi'. For 
definites we set zl* <Tl**: 

Then taking into account Lemma 4 we obtain 

0 < T1* - z1** = Ml" / (J'(c* - cn')) - N,"/ (y (c* - cz1l)) = 

Nl" (C?Il - CJ) /(y (c* L c*11)(c* - Cl?))< 0 

We have thus obtained a contradiction. Since the case of T1*>tl** also results in a con- 

tradiction, hence zl* = Q**. We similarly establish by induction that T,* = Tj**, j = 2, . . . . 
M . The theorem is proved. 

Let us consider the question of numerical solution of problem (2.1)-(2.2) in more detail. 

Let us consider the following iteration process: 

ml(c$),= D(cl",'),, - I?(&&, i = 1, . . , n - 1 

m2 (c!“‘)~ = D (cl”‘) m n xx- lP(&) + y (c* - P) i=n+ 1, . ..( iw--l 

D (&$ = v” (&A - c*), (&)x = 0, (&.. = 0 

(& z (c$ - cg-,, / z$‘, (&$ = (CISI - c&J / h 

The recurrent approximation of T~('+') is determined using formulas 

7;1S+n= (aStl I h,+,)/ 2 

A, = N,:_' 1 (y (CL - &J>))< &‘, as+1 = as> b,,, = z:’ 

A > d.’ 8, 74, o,+, = T$‘, b,,, = b, 

zf’ zz ‘I’;;-‘/ yc*, Lll = Iv:-’ / yc*, bl = A$-’ / y (c* - c?;) 

For a given T,@+~J function cin(s+l) is computed by the run-through method. 

Theorem 2, If conditions of Lemma 3 are satisfied, the considered here process con- 

verges to the solution of problem (2.1)- (2.2). 

Proof, The existence of solution T,. c~", i := 0, . . . . M follows from Theorem 1. Let 

us prove that TV1 G IT,('), ASI. For definiteness we assume that T,, ,c' T,,(.) . We have 

A, - T,,= N::-'/ (]‘(P - c’n;)) - h’7;-‘/(y(c* -c,“)) 
Lemma 4 implies that C,,,,(‘) J '1 CT? ) hence A,- T,c;O or 4, <%?- The case of T, > T,,(.) 

is similarly considered. Thus, either To < T,, < A, or A. & 7, < T71(*) . We shall now prove 

that for any s>l,T,Ela,. b,l. Indeed, for s = 1 

Tg’ = Ol = Iv;-’ / yC* < A’;:-’ / (v (C* - Cn”)) = 7, 

On the other hand, since T, 3 T,,(") hence by virtue of Lemma 4 

Thus t, E [a,, b,l. 
Let us now assume that T,,+z [a,, b,\l and prove that G7 E la,,,. &+,I. In fact, if 't, ‘i (a., + 

b,) I2 = T,,(S‘ , then it follows from the above A,> T,~> T,,(') and we select a,,, = T,(‘), /I,,, = h, . 

Hence T>L cz la,+,, b,+ll . If T,, :_; (a, + b,) / 2, then A, k_ T, _:T,(‘) and we select a,,, = a, and 

b s+I = t,(S) . As previously, we have T,, sz In,,l, 6,+11 . Thus r, and ?,CSJ E [a,, b,l s La 1. 
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Since by definition b, -a,+ 0 as S+ 00 , hence z,/d) 3 z,, , as s+ 00 , and since c,, 
is continuously dependent on T,,('), then tin(') + CL”, i = 0, ., M as s+ 00 . The theorem is 

proved. 

Theorem 3, If the conditions 

y > u*h’, I (c* - c.$). c* > c* > 0 

are satisfied, there exists a unique solution of the input problem (1.1). 

proof, Let us examine the sequence of grids a+,, h,,+O with p-t,=. For each grid 

we extend the definition of functions ci’3 (ci’)X> (Ci’L7 (Ci’)lr Ni’ r and (Nil), linearly /8/ over 

all QTr and denote them, respectively, by cp (5, t), # (x, t), r” (cc> 4, s” (x, t). N” (17 t) , and R” 
(5, t). 

In addition we define the broken line 

Using the Bernshtein estimates /8/ we find that {c~}, {y"), {rp} and (So}, are compact in 

regions G,6 = {(I, t) : 6 < 5 < 1” (t) - 6, S< t < ?“I and G,a = {(z, t) : 1” (t) + 6 6: z < L -- 6, 6 il. t < T), 
while (NP}, {RP) is compact in c',*, where S>O is any fairly small number. This implies 
the existence of subsequence of numbers which we also denote by 
and s.'k 

PI; I such that &, y%, yi, 
converge, respectively, to some c) (5, t), y (5, t), r@(s,t) , and S-(X. t) at any internal 

point Qr, 5 T= 1” (4 r and uniformly in GIe and Cz6 for any fairly small 
we have /8/ 

6)O. Similarly 

Y (5, t) = c.<l (5, t), r (2, t) = c,,‘ (x, t). s-’ (z, t) = cxo (z, t) 

The proof of uniform convergence of .V"J, and f{'L to !V" (z.t), and XI0 (t, 1). 1 ;t) *-_ Ic ._ 1, 
is similar. As in /8/, we obtain that c"(.r,t) and ,V'(s, t) satisfy the respective differential 

equations and boundary conditions in (1.1). 
It follows from Lemmas 2, 3, 5, and 6 that {c") is compact in vi. and, consequently, :cfl,} 

uniformly converges in Q,r to c'(-_,tj 8.: C (C)r), i.e. the first condition of junction on I" (t) 
is satisfied in the classical sense. From these lemmas we further have that N*k and RPk 
uniformly converge in [l”(t), Ll x [O, Tl to N”,Nto~ C. The sequence (y"} is compact in C [O, Ll 
for any fixed tE IO,Tl, which follows from Lemmas 3 and 6, and, consequently, YPh (5, to) 
uniformly converges to c,(z, tl)) for any t, E [O, Tl . This also implies the fulfilment of the 
conjunction condition for c,' on 

and the convergence of {NPk} and 
I" (t) . Finally, taking into account the condition 

{l"k} , we obtain N” (1” (t) + 0, t) = 0. 
N,’ = 0 

Thus the set of three functions co (x, t), N" (~9 t) , and l"(t) is the solution of problem (1.1). 
It uniqueness is proved by the method of contractive mappings. The theorem is proved. 

The authors thanks F. P. Vasil'ev for advice and interest in this work. 
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